Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

# Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Dec. 2, 2022

### Outline

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in ℙ<sup>2</sup>

Recent Development:

### 1 Motivation

2 Relative GW Invariants

3 Degeneration Formula

4 Counting Curves in  $\mathbb{P}^2$ 

5 Recent Developments

### Motivation

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

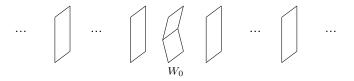
Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

### Consider a "nice" family $W \to \mathbb{A}^1$ of varieties:

- Projective family;
- Smooth total space;
- Fibers  $W_t$  smooth for  $t \neq 0$ ;
- $W_0$  is union of two smooth varieties  $Y_1$  and  $Y_2$  that intersect transversally.



# Motivation (cont.)

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

Degeneratior Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments

- Gromov-Witten invariants are deformation-invariant, so we know that the GW theories are equivalent for all Wt with t ≠ 0.
- So in some sense, the GW theory of  $W_0$  must be equal to that of  $W_t$ .
- This correspondence is made precise by Jun Li's theory of relative GW invariants and the degeneration formula.

# Motivation (cont.)

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

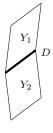
Relative GW Invariants

Degeneration Formula

Counting Curves in ℙ<sup>2</sup>

Recent Developments **Relative GW theory** considers the moduli space of relative maps. Here, "relative" means with respect to a divisor.

The **degeneration formula** computes the GW invariant of  $W_t$  for  $t \neq 0$  using the relative GW invariants of  $Y_1$  and  $Y_2$  (relative to D).



 $W_0$ 

### Relative Maps

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneratior Formula

Counting Curves in ℙ<sup>2</sup>

Recent Developments  Let Y be a smooth variety and let D ⊂ Y be a smooth divisor.

Write  $Y^{\text{rel}}$  for the pair (Y, D).

We say

$$f: (X, p_1, \dots, p_n, q_1, \dots, q_r) \to Y^{\mathsf{rel}}$$

is a **relative map** if the  $p_i$ 's are ordinary marked points and  $f(q_j) \in D$  for all j.

• Fix contact orders:

$$f^{-1}(D) = \sum \mu_i q_i$$

as Cartier divisors for specified set of integers  $\mu_i$ .

### Changing the Target

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

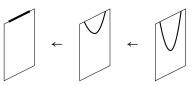
Motivation

Relative GW Invariants

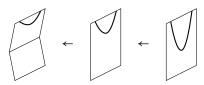
Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments • The moduli space of relative maps is **not** proper.



• Solution: Define **relative stable morphisms** by changing the target of our morphisms.



### The New Targets

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments

- $\Delta = \mathbb{P}(N_{D/Y} \oplus \mathcal{O}_D)$  is a  $\mathbb{P}^1$ -bundle over D.
- Let s<sub>0</sub> = P(N<sub>D/Y</sub>) and s<sub>∞</sub> = P(O<sub>D</sub>) be the zero and infinity sections of Δ respectively.
  - Create  $Y_n$  by gluing n copies of  $\Delta$  to Y.

### The New Targets (cont.)

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

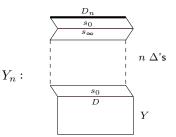
Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

- Glue  $s_0$  of the first copy of  $\Delta$  to  $D \subset Y$ .
  - Glue  $s_{\infty}$  of the j-th copy of  $\Delta$  to  $s_0$  of the j + 1-st copy.
  - Let  $D_n$  be the infinity section of the last  $\Delta$ .



# Topological Type of Relative Stable Morphisms

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in ℙ<sup>2</sup>

Recent Developments Graph: finite collection of vertices, edges, legs, and roots.

- Leg/root: line segment with only one end attached to a vertex.
- Weighted root: a root with a integer assigned to it.

#### Definition

An admissible graph  $\Gamma$  is a graph without edges with the following data:

- Ordering of legs;
- Ordering of weighted roots;
- Two weight functions  $g, d: V(\Gamma) \to \mathbb{Z}^{\geq 0}$ .

### Pre-Stable Relative Morphisms

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments Let  $\Gamma$  be an admissible graph with l vertices, n legs, and r roots with weights  $\mu_i.$ 

#### Definition

A pre-stable relative morphism to Y of type  $\Gamma$  is a quadruple  $(f,X,p_i,q_j)$  such that

- 1. X is a disjoint union  $X_1 \cup \cdots \cup X_l$ , where each  $X_i$  is a pre-stable connected curve of genus  $g(v_i)$ .
- p<sub>i</sub> ∈ X, i = 1,...,n and q<sub>j</sub> ∈ X, j = 1,...,r are distinct points away from the singular loci of X such that p<sub>i</sub> ∈ X<sub>j</sub> (resp. q<sub>i</sub> ∈ X<sub>j</sub>) if the *i*-th leg (resp. *i*-th root) of Γ is attached to v<sub>j</sub>.
- 3.  $f: (X, p_i, q_j) \to Y_n$  is a relative morphism such that  $f^{-1}(D_n) = \sum_{i=1}^r \mu_i q_i$  as Cartier divisors and  $\deg f|_{X_i} = d(v_i)$ .

### Admissibility

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in ℙ<sup>2</sup>

Recent Development Let  $D_1, \ldots, D_n$  be the singular divisors of  $Y_n$ .

#### Definition

We say that f is *admissible* if the following holds:

- 1.  $f^{-1}(D_i)$  is a finite discrete set;
- 2.  $f^{-1}(D_i)$  is a set of nodes of X;
- 3. Any such node p is the intersection of two irreducible components, say  $A_-$  and  $A_+$ , of X such that  $f(A_-) \subset \Delta_{i-1}$ and  $f(A_+) \subset \Delta_i$ .
- 4.  $f|_{A_+}$  and  $f|_{A_-}$  have the same contact orders with  $D_i$  at f(p).

### Relative Stable Morphisms

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

#### Motivation

Relative GW Invariants

Degeneratior Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments

- Define Aut(Y<sub>n</sub>) = (C<sup>\*</sup>)<sup>n</sup>, with C<sup>\*</sup> acting on the P<sup>1</sup>-fibers of Δ<sub>i</sub> ⊂ Y<sub>n</sub>.
- Given a relative map  $f: X \to Y_n$ , define

$$\operatorname{Aut}(f) = \{(h, \sigma) \in \operatorname{Aut}(X) \times \operatorname{Aut}(Y_n) : \sigma \circ f = f \circ h\}.$$

### Definition

A pre-stable relative morphism  $f: X \to Y_n$  is stable if f is admissible and Aut(f) is finite.

### The Stack of Relative Stable Morphisms



Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in P

Recent Developments



 $\operatorname{Aut}(f) = \mathbb{C}^*$ 

 $\operatorname{Aut}(f) = {\operatorname{id}}$ 

#### Theorem

The moduli space  $\overline{\mathcal{M}}_{\Gamma}(Y^{rel})$  of relative stable morphisms to  $Y^{rel} = (Y, D)$  of fixed topological type  $\Gamma$  is a proper, separated Deligne-Mumford stack.

### Relative GW Invariant

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in P

Recent Development Fact:  $\overline{\mathcal{M}}_{\Gamma}(Y^{\text{rel}})$  has a perfect obstruction theory and so admits a virtual fundamental class.

#### Definition

For  $a \in H^*(Y^n)$  and  $b \in H^*(D^r)$ , the relative GW invariant of topological type  $\Gamma$  is

$$\Psi_{\Gamma}^{Y^{\mathsf{rel}}}(a,b) = \int_{[\overline{\mathcal{M}}_{\Gamma}(Y^{\mathsf{rel}})]^{\mathsf{vir}}} \mathrm{ev}_{Y}^{*}(a) \cup \mathrm{ev}_{D}^{*}(b),$$

where  $ev_Y: \overline{\mathcal{M}}_{\Gamma}(Y^{\mathsf{rel}}) \to Y^n$  and  $ev_D: \overline{\mathcal{M}}_{\Gamma}(Y^{\mathsf{rel}}) \to D^r$  are the evaluation maps on the ordinary and relative marked points respectively.

For disconnected domain curves, we take the product of the GW invariants of the connected components.

### Returning to the Motivation

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in P<sup>2</sup>

Recent Development

- Consider again a projective family  $\pi: W \to \mathbb{A}^1$  such that:
  - the total space is smooth;
  - the fibers  $W_t$  are smooth for  $t \neq 0$ ;
  - $W_0$  is union of two smooth varieties  $Y_1$  and  $Y_2$  intersecting transversally along smooth divisors  $D_i \subset Y_i$ .
- Lift cohomology classes  $\alpha(t) \in W_t$  to the family:
  - let  $\mathbb{Q}_W$  be the sheaf of locally constant functions on W;
  - take  $\alpha \in H^0(R^*\pi_*\mathbb{Q}_W)^{\times n}$ ;
  - let  $\alpha(t)$  be its image in  $H^*(W_t)^{\times n}$ .

### Degeneration Formula

Relative Gromov-Witten Invariants and the Degeneration Formula

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

#### Theorem

 $\Psi_{g,i}^W$ 

Let  $j_i: Y_i \to W_0$  be the inclusion map. Then

$$\sum_{\gamma} \frac{m(\gamma)}{|\operatorname{Aut}(\gamma)|} \left[ \Psi_{\Gamma_1}^{Y_1^{rel}}(j_1^*\alpha(0), b) \cdot \Psi_{\Gamma_2}^{Y_2^{rel}}(j_2^*\alpha(0), b^*) \right],$$

### where:

- $\Psi_{a,n,d}^{W_t}$  is the ordinary GW invariant;
- $\gamma = (\Gamma_1, \Gamma_2, I)$  is an admissible triple that glues to give an ordinary stable map to  $W_0$  of type (g, n, d).
- $m(\gamma)$  is the product of the weights of  $\gamma$ ;
- $Aut(\gamma)$  are the automorphisms of the triple; and
- $b^*$  is the dual of b.

### The Admissible Triples $\gamma$

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in ℙ<sup>2</sup>

Recent Developments

- We say that  $\gamma = (\Gamma_1, \Gamma_2, I)$  is an admissible triple if:
  - 1. Each  $\Gamma_i$  corresponds to a relative stable morphism from  $X_i$  to Y;
- 2. Their ordered sets of weighted roots are isomorphic;
  - $\implies$  This allows us to glue the relative marked points of  $X_1$  and  $X_2$  to produce a new nodal curve X and a new morphism  $f: X \rightarrow Y$ .
- 3. X is connected of genus g and f is a stable morphism of degree d;
- 4. I is an ordering of the union of the ordinary marked points of  $X_1$  and  $X_2$  that is consistent with their original orderings.

# $m(\gamma)$ and $\operatorname{Aut}(\gamma)$

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

$$\mathsf{Recall:} \quad \Psi^W_{g,n,\beta}(\alpha) = \sum_{\gamma} \frac{m(\gamma)}{|\operatorname{Aut}(\gamma)|} \left( \Psi^{Y^{\mathsf{rel}}_1}_{\Gamma_1}(j_1^*\alpha(0), b) \cdot \Psi^{Y^{\mathsf{rel}}_2}_{\Gamma_2}(j_2^*\alpha(0), b^*) \right).$$

### Definition

 $m(\gamma)$  is the product of the weights of the roots of  $\gamma$ .

Let  $\gamma = (\Gamma_1, \Gamma_2, I)$  be an admissible triple with r roots. Then any permutation  $\sigma \in S_r$  acts on  $\gamma$  by reordering the roots of  $\gamma$ .

### Definition

$$\operatorname{Aut}(\gamma) = \{ \sigma \in S_r : \gamma = \gamma^\sigma \}.$$

### Application: Counting Curves in $\mathbb{P}^2$

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneratio Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments  Let α = (α<sub>i</sub>) and β = (β<sub>j</sub>) be two finite sequences of non-negative integers.

- $|\alpha| = \sum \alpha_i. \qquad \qquad \mathbf{a} + \beta = (\alpha_i + \beta_i).$
- $I\alpha = \sum i\alpha_i. \qquad a \ge \beta \iff \alpha_i \ge \beta_i \text{ for all } i.$  $I^{\alpha} = \prod i^{\alpha_i}. \qquad (\alpha_{\beta}) = \prod (\alpha_{\beta_i}).$
- Fix a line  $L \subset \mathbb{P}^2$ .
- Define  $N^{d,g}(\alpha,\beta)$  to be the number of degree d, genus g nodal curves that:
  - have contact order i at  $\alpha_i$  fixed points of L;
  - have contact order j at  $\beta_j$  arbitrary points of L;
  - pass through an appropriate n general points in  $\mathbb{P}^2$ .

### Caporaso-Harris Formula

Relative Gromov-Witten Invariants and the Degeneration Formula Dohoon Kim Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Development • Caporaso & Harris (1998) proved that

$$\begin{split} N^{d,g}(\alpha,\beta) &= \sum_{k:\beta_k>0} k \cdot N^{d,g}(\alpha+e_k,\beta-e_k) \\ &+ \sum I^{\beta'-\beta} \binom{\alpha}{\alpha'} \binom{\beta'}{\beta} \cdot N^{d-1,g'}(\alpha',\beta'), \end{split}$$

where the second sum is taken over all  $\alpha',\beta',g'$  such that

- $\bullet \ \alpha' \leq \alpha; \qquad \bullet \ g g' = |\beta'| |\beta| 1;$
- $\beta' \ge \beta; \qquad \qquad d-2 \ge g-g'.$
- $\blacksquare I\alpha' + I\beta' = d 1;$
- We will prove this using the degeneration formula. [lonel & Parker (1998); Li (2004)]

# $N^{d,g}(lpha,eta)$ as Relative GW Invariants

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments • Let  $\Gamma$  be a graph with:

- one vertex of degree d and genus g (one connected component);
- n legs (ordinary marked points);
- $|\alpha| + |\beta|$  weighted roots (relative marked points).
- Let  $a \in H^4((\mathbb{P}^2)^n)$  be the product of point classes and let  $b \in H^*(L^{|\alpha|})$  be the product of  $|\alpha|$  copies of point classes in  $H^2(L)$  and  $|\beta|$  copies of  $1 \in H^0(L)$ . Then

$$N^{d,g}(\alpha,\beta) = \int_{[\overline{\mathcal{M}}_{\Gamma}(Y,L)]^{\mathsf{vir}}} \mathrm{ev}_{\mathbb{P}^2}^*(a) \cup \mathrm{ev}_L^*(b).$$

• For dimension reasons, the above integral forces  $n = 2d + g - 1 + |\alpha| + |\beta|.$ 

### Degeneration

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

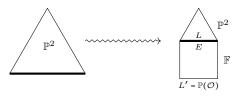
Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments By blowing up L×0 ⊂ P<sup>2</sup>×A<sup>1</sup>, we can degenerate P<sup>2</sup> to the union of P<sup>2</sup> and the Hirzebruch surface F = P(O ⊕ O(1)), glued along L ⊂ P<sup>2</sup> and E := P(O(1)) ⊂ F.



- More precisely, we are degenerating the relative pair  $(\mathbb{P}^2; L)$  to the union of  $(\mathbb{P}^2; L)$  and  $(\mathbb{F}; E, L')$ .
- Obtain the recursive formula of Caporaso-Harris by moving one ordinary marked point p to the  ${\mathbb F}$  side.

## Outline of Solution

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments

- Let  $N^{d,g}_{\mathbb{F}}(\alpha',\beta';\alpha,\beta)$  be the number of curves in  $\mathbb{F}$  of degree d and genus g that pass though p and
  - have contact  $(\alpha', \beta')$  along E;
  - have contact  $(\alpha, \beta)$  along L';
- The degeneration formula tells us that

$$N^{d,g}(\alpha,\beta) = \sum_{\gamma/\sim} m(\gamma) N^{d',g'}(\alpha',\beta') \cdot N_{\mathbb{F}}^{d-d',g''}(\beta',\alpha';\alpha,\beta),$$

where  $\gamma = (\Gamma_1, \Gamma_2, I)$  is an admissible triple such that:

- $\Gamma_1$  has degree d', genus g', n-1 legs, and roots with weights  $(\alpha', \beta')$ ;
- $\Gamma_2$  has degree d d', genus g'', 1 leg, and roots with weights  $(\beta', \alpha')$ .
- By analyzing classes of curves in  $\mathbb{F}$ , we can show that d d' = 0 or 1.

d-d'=0

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneratior Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments

- In  $\mathbb{F}$ , we must have maps (relative to E and L') of class mF, where F is the fiber class.
- A dimension count forces the map to be fully ramified at *E* and *L*, hence the map is unique.
  - If the fiber does not go through the ordinary marked point, the GW invariant is 1/m.

In this case, one endpoint must be fixed, and the other must be moving.

• If the fiber goes through the ordinary marked point, the GW invariant is 1.

In this case, both endpoints must be moving.

$$d - d' = 0 \text{ (cont.)}$$

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

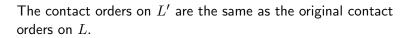
Motivation

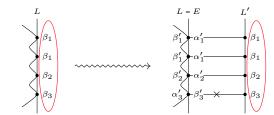
Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Development Example:  $(d, g, \alpha, \beta) = (7, 0, (0), (2, 1, 1))$  degenerates to (7, 0, (0, 1), (2, 0, 1)).





### $\alpha' \text{ and } \beta'$

Relative Gromov-Witten Invariants and the Degeneration Formula

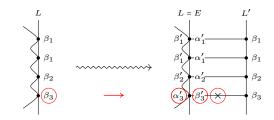
Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Development



- Suppose the ordinary marked point is on the last fiber
   ⇒ The contact on E in F must be moving.
  - $\implies$  The contact on L in  $\mathbb{P}^2$  must be fixed.
- In ℙ<sup>2</sup>, a moving contact of order k must change to a fixed contact of order k.

$$\implies \alpha' = \alpha + e_k \text{ and } \beta' = \beta - e_k.$$

### Relative GW Invariant in $\ensuremath{\mathbb{F}}$

Relative Gromov-Witten Invariants and the Degeneration Formula

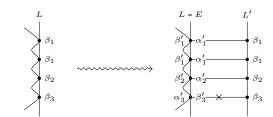
Motivation

Relative GW Invariants

Degeneratio Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments



- Recall:
  - Fiber with no marked point  $\Rightarrow$  GW = 1/m.
  - Fiber with marked point  $\Rightarrow$  GW = 1.
- Product of all contact orders =  $I^{\alpha'}I^{\beta'} = I^{\alpha}I^{\beta}$ .
- $N^{0,0}_{\mathbb{F}}(\beta',\alpha';\alpha,\beta) = N^{0,0}_{\mathbb{F}}(\beta-e_k,\alpha+e_k;\alpha,\beta) = \frac{k}{I^{\alpha}I^{\beta}}.$

$$d - d' = 0$$
 (Plugging In)

So in this case,

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Development

$$\sum_{\gamma/\sim} m(\gamma) \cdot N^{d',g'}(\alpha',\beta') \cdot N_{\mathbb{F}}^{d-d',g''}(\beta',\alpha';\alpha,\beta)$$

$$= \sum_{k:\beta_k>0} I^{\alpha}I^{\beta} \cdot N^{d,g}(\alpha+e_k,\beta-e_k) \cdot N_{\mathbb{F}}^{0,0}(\beta-e_k,\alpha+e_k;\alpha,\beta)$$

$$= \sum_{k:\beta_k>0} I^{\alpha}I^{\beta} \cdot N^{d,g}(\alpha+e_k,\beta-e_k) \cdot \frac{k}{I^{\alpha}I^{\beta}}$$

$$= \sum_{k:\beta_k>0} k \cdot N^{d,g}(\alpha+e_k,\beta-e_k).$$

### d - d' = 1

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneratior Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments

### • We must have:

- 1. Several rational covers of the fiber;
- 2. A rational curve in the class L' + mF passing through the ordinary marked point and having all contacts with E and L' fixed.
- Again, there is a unique curve.

### $\alpha' \text{ and } \beta'$

Relative Gromov-Witten Invariants and the Degeneration Formula Dohoon Kim

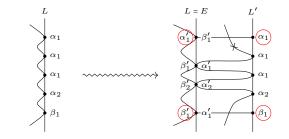
Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Development Example:  $(d, g, \alpha, \beta) = (6, 0, (3, 1), (1, 0))$  degenerates to (5, -1, (1.0), (2, 1)).



- Each  $\beta_k$  on L' must be connected to a  $\beta'_k$  on L by a fiber, so  $\beta \leq \beta'$ .
- Each  $\alpha'$  on L corresponds to a  $\beta'$  on E, which must be on a fiber, so is connected to a  $\alpha$  on L'. So  $\alpha' \leq \alpha$ .

# d - d' = 1 (GW Invariant in $\mathbb{F}$ )

Relative Gromov-Witten Invariants and the Degeneration Formula Dohoon Kim

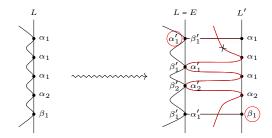
Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Developments



- GW invariant of the degree one curve is 1.
- GW invariant of each map of class mF is 1/m.
  - Each element of  $\alpha'$  is on a fiber.
  - Each element of  $\beta$  is on a fiber.

$$\implies N_{\mathbb{F}}^{1,0}(\beta',\alpha';\alpha,\beta) = \frac{1}{I^{\alpha'}I^{\beta}}$$

## d - d' = 1 (Number of Graphs)

Relative Gromov-Witten Invariants and the Degeneration Formula Dohoon Kim

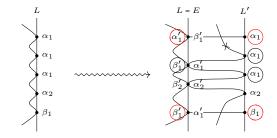
Motivation

Relative GW Invariants

Degeneration Formula

 $\begin{array}{l} \text{Counting} \\ \text{Curves in } \mathbb{P}^2 \end{array}$ 

Recent Development:



- On L': each  $\beta$  is automatically on a fiber.
  - Each  $\alpha'$  on L needs to be on a fiber.
  - $\binom{\alpha}{\alpha'}$  choices for which fixed points on L' lie on a fiber.
- On L : each  $\alpha'$  is automatically on a fiber.
  - Each  $\beta$  on L' needs to be on a fiber.
  - $\binom{\beta'}{\beta}$  choices for which moving points on L lie on a fiber.

$$d - d' = 1$$
 (Plugging In)

So in this case,

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GV Invariants

Degeneration Formula

Counting Curves in  $\mathbb{P}^2$ 

Recent Developments

$$\sum_{\gamma/\sim} m(\gamma) \cdot N^{d',g'}(\alpha',\beta') \cdot N_{\mathbb{F}}^{d-d',g''}(\beta',\alpha';\alpha,\beta)$$

$$= \sum {\binom{\alpha}{\alpha'}} {\binom{\beta'}{\beta}} \cdot I^{\alpha'}I^{\beta'} \cdot N^{d-1,g'}(\alpha',\beta') \cdot N_{\mathbb{F}}^{1,0}(\beta',\alpha';\alpha,\beta)$$

$$= \sum {\binom{\alpha}{\alpha'}} {\binom{\beta'}{\beta}} \cdot I^{\alpha'}I^{\beta'} \cdot N^{d-1,g'}(\alpha',\beta') \cdot \frac{1}{I^{\alpha'}I^{\beta}}$$

$$= \sum {\binom{\alpha}{\alpha'}} {\binom{\beta'}{\beta}} \cdot I^{\beta'-\beta} \cdot N^{d-1,g'}(\alpha',\beta').$$

This gives us the formula of Caporaso-Harris.

### **Recent Developments**

Relative Gromov-Witten Invariants and the Degeneration Formula

Dohoon Kim

Motivation

Relative GW Invariants

Degeneratior Formula

Counting Curves in ℙ<sup>2</sup>

Recent Developments

- 1. Abramovich and Fantechi (2011) simplified the obstruction theory and extended the degeneration formula to orbifolds.
- 2. (a) Logarithmic GW invariants allow  $D \subset Y$  to be a normal crossings divisor, as opposed to a smooth divisor in Jun Li's theory.

[Chen and Abramovich (2011); Gross and Siebert (2011)]

- (b) Abramovich, Chen, Gross, and Siebert (2021) introduced punctured logarithmic maps that allow marked points to have negative contact orders.
- 3. There are degeneration techniques for rank 1 Donaldson-Thomas theory given by Li and Wu (2011) for smooth divisors and by Maulik and Ranganathan (2020) for simple normal crossings divisors.